Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Brian C. Frye, Mark S. Mashuta, Christopher S. Mullins, Craig A. Grapperhaus and Robert M. Buchanan*

Department of Chemistry, University of Louisville, KY 40292, USA

Correspondence e-mail:
msmashuta.xray@louisville.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.030$
$w R$ factor $=0.068$
Data-to-parameter ratio $=12.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethyl 1-methylimidazole-2-carboxylate

The title compound, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, crystallizes as a nearly planar molecule. The carboxyethyl group is twisted by $4.43(14)^{\circ}$ relative to the plane that includes the imidazole group. The carbonyl unit of the carboxyethyl group is oriented anti to the N-methyl group of the imidazole.

Comment

The title compound, (I), has been used to synthesize polyamide anticancer agents that contain N -methylimidazole and N-methylpyrrole groups (Baird \& Dervan, 1996; Baraldi et al., 2003; Krowicki \& Lown, 1987; Zaffaroni et al., 2002), which bind to the minor groove of DNA and display G-C and C-G base pair recognition (Moser \& Dervan, 1987; Marques et al., 2002). Compound (I) is a potential synthon for synthesizing amide-functionalized imidazole chelates (Cheruzel et al., 2002).

(I)

The structure of the related ethyl 1-methyl-4-nitro-imidazole-2-carboxylate (Wu et al., 2004), has been reported recently and contains disordered carboxyethyl and N-methyl groups, unlike the structure of (I). The carbonyl unit is oriented anti to the N-methyl group in (I), whereas in ethyl 1-methyl-4-nitroimidazole-2-carboxylate, the carbonyl group adopts a syn configuration.

Molecules of (I) are stacked along the crystallographic a axis (Fig. 2), the closest contacts between molecules being 3.4391 (13) Å, between N 1 at (x, y, z) and C^{\prime} at $(-x, 1-y$, $-z$), and 3.4921 (12) \AA, between C5 at (x, y, z) and $\mathrm{O}^{\prime \prime}$ at ($1-x, 1-y, 1-z$). The carboxyethyl groups in alternating layers of the stack are oriented in opposite directions, minimizing steric interactions between symmetry-related molecules in adjacent stacks. The imidazole ring in (I) is planar and the torsion angle ($\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 2$) associated with the carboxyethyl group is $4.43(14)^{\circ}$, compared with $15.0(1)^{\circ}$ reported for ethyl 1-methyl-4-nitroimidazole-2-carboxylate (Wu et al., 2004).

Experimental

Compound (I) was synthesized following a previously reported procedure (Krowicki \& Lown, 1987). Ethyl chloroformate (0.28 mol)
\qquad
was added to an acetonitrile solution (60 ml) of N-methylimidazole $(0.12 \mathrm{~mol})$ and triethylamine $(0.22 \mathrm{~mol})$ at 253 K . After 24 h the solution was filtered and the solvent was removed. The resulting residue was dissolved in water and extracted with chloroform. A white solid obtained by column chromatography (silica gel, ethyl acetate) was recrystallized by slow evaporation of the solution in ethyl acetate.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \\
& M_{r}=154.17 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.104(8) \AA \\
& b=15.2244(18) \AA \\
& c=7.4511(9) \AA \\
& \beta=112.79(2)^{\circ} \\
& V=742.92(15) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART APEX
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.960, T_{\text {max }}=0.988$
6360 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.068$
$S=1.02$
1728 reflections
140 parameters
All H -atom parameters refined

$$
D_{x}=1.378 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 5362 reflections
$\theta=2.7-28.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Plate, colorless
$0.37 \times 0.29 \times 0.09 \mathrm{~mm}$

1728 independent reflections
1636 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-19 \rightarrow 19$
$l=-9 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0213 P)^{2}\right. \\
& \quad+0.3603 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Figure 1

ORTEP-3 drawing (Farrugia, 1997) showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.

Figure 2
A partial packing diagram, showing molecules of (I) stacked along the crystallographic a axis. H atoms of the methyl C atoms have been omitted for clarity. Dashed lines indicate short contacts. [Symmetry codes: (') $-x$, $1-y,-z ;\left(^{\prime \prime}\right) 1-x, 1-y, 1-z$.]

Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Cheruzel, L. E., Wang, J. P., Mashuta, M. S. \& Buchanan, R. M. (2002). Chem. Commun. 18, 2166-2167.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Krowicki, K. \& Lown, J. W. (1987). J. Org. Chem. 52, 3493-3501.
Marques, M. A., Doss, R. M., Urbach, A. R. \& Dervan, P. B. (2002). Helv. Chim. Acta, 85, 4485-4517.
Moser, H. E. \& Dervan, P. B. (1987). Science, 238, 645-650.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
Wu, H. Q., An, L. K., Huang, Z. S., Gu, L. Q., Zain, S. M. \& Ng, S. W. (2004). Acta Cryst. E60, o994-o995.
Zaffaroni, N., Lualdi, S., Villa, R., Bellarosa, D., Cermele, C., Felicetti, P., Rossi, C., Orlandi, L. \& Daidone, M. G. (2002). Eur. J. Cancer, 38, 17921801.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

